metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

E Yang,* Fa-Fu Yang and Shun-Yu Chen

College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, People's Republic of China

Correspondence e-mail: yangeli66@yahoo.com.cn

Key indicators

Single-crystal X-ray study T = 294 KMean $\sigma(\text{C}-\text{C}) = 0.005 \text{ Å}$ R factor = 0.027 wR factor = 0.068 Data-to-parameter ratio = 12.9

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Poly[μ -aqua-aqua(μ_4 -2-oxidobenzene-1,3dicarboxylato)(μ_2 -2-oxidobenzene-1,3dicarboxylato)cadmium(II)dicopper(II)]

In the molecule of the title compound, $[CdCu_2(C_8H_3O_5)_2(H_2O)_2]_n$, each 2-oxidobenzene-1,3-dicarboxylate trianion is bonded to two Cu atoms through O atoms of the carboxylates and the deprononated hydroxy group in chelating mode, forming $[Cu_2(C_8H_3O_5)_2]^{2-}$ units. A pair of $[Cu_2(C_8H_3O_5)_2]^{2-}$ units is then coordinated to each Cd atom, forming an infinite chain. The crystal structure is stabilized by intermolecular O– H···O hydrogen bonds.

Comment

Although some metal coordination polymers with benzenedicarboxylate have been reported, syntheses involving *in situ* reaction of benzenedicarboxylic acids are quite rare (Tao *et al.*, 2002; Jiang *et al.*, 2005). We report here the crystal structure of the title compound, (I). The 2-oxidobenzene-1,3-dicarboxylate trianion found in (I) was generated *in situ* by the hydroxylation of benzene-1,3-dicarboxylic acid during the synthesis.

The single-crystal X-ray structure determination showed that (I) is a heterometallic coordination polymer containing bis(2-oxidobenzene-1,3-dicarboxylato)dicopper(II) and a Cd atom. Each Cu center has a distorted square-planar geometry (Table 1, Fig. 1). Each of the Cu atoms is roughly coordinated by four O atoms, of which two belong to the deprotonated hydroxy groups and the other two belong to carboxylate groups of two 2-oxidobenzene-1,3-dicarboxylate trianion ligands.

© 2006 International Union of Crystallography All rights reserved The Cd atom is seven-coordinated by four O atoms from two chelating carboxylate groups of 2-oxidobenzene-1,3dicarboxylate trianion ligands and three O atoms from water Received 8 June 2006 Accepted 13 June 2006

V = 843.5 (5) Å³

 $D_x = 2.495 \text{ Mg m}^{-3}$

 $0.15 \times 0.12 \times 0.05 \text{ mm}$

6580 measured reflections

3811 independent reflections

3324 reflections with $I > 2\sigma(I)$

Mo $K\alpha$ radiation

 $\mu = 3.82 \text{ mm}^{-1}$

T = 294 (2) K

Prism, blue

 $R_{\rm int}=0.019$

 $\theta_{\rm max} = 27.5^{\circ}$

Z = 2

Figure 1

The structural repeat unit of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Two H atoms on O1Wb have been omitted for clarity [symmtry codes: (a) -x, 1 - y, 2 - z; (b) x, 1 + y, z].

Figure 2

A view of the infinite chain. H atoms have been omitted.

Figure 3 A view of the double chain. H atoms have been omitted.

molecules, yielding a distorted pentagonal-bipyramidal coordination (Table 1 and Fig. 1). In addition, two Cd atoms are bridged by two O atoms from water molecules, forming a centrosymmetric Cd₂O₂ parallelogram unit.

It can be seen that atoms Cu1, Cu2 and two 2-oxidobenzene-1,3-dicarboxylate trianions form a [Cu₂(C₈H₃O₅)₂]²⁻ unit (Fig. 1), and a pair of $[Cu_2(C_8H_3O_5)_2]^{2-}$ units are then coordinated to Cd atoms, resulting in an infinite chain (Fig. 2). The most interesting feature is that Cd_2O_2 acts as a junction, connecting two infinite single chains into a double chain (Fig. 3).

The crystal structure is stabilized by intermolecular O- $H \cdot \cdot \cdot O$ hydrogen bonds (Table 2).

A mixture of Cd(CH₃COO)₂·4H₂O (0.248 g), CuI (0.408 g), benzene-1,3-dicarboxylic acid (0.372 g) and Na₂CO₃ (0.292 g) in H₂O (18 ml) was kept at 418 K for 3 d in a Teflon-lined bomb (23 ml). After the reaction mixture had been slowly cooled to room temperature, blue crystals of (I) appeared (yield 0.451 g, 86.8%)

Crystal data

[CdCu₂(C₈H₃O₅)₂(H₂O)₂] $M_r = 633.72$ Triclinic, $P\overline{1}$ a = 8.272 (3) Å b = 10.362 (3) Å c = 11.373 (4) Å $\alpha = 102.026 (2)^{\circ}$ $\beta = 109.877 (3)^{\circ}$ $\gamma = 103.958 (1)^{\circ}$

Data collection

Bruker SMART CCD area-detector diffractometer φ and ω scans Absorption correction: multi-scan (SADABS; Sheldrick, 1996)

 $T_{\min} = 0.579, \ T_{\max} = 0.830$

Refinement

Refinement on F^2	H atoms treated by a mixture of
$R[F^2 > 2\sigma(F^2)] = 0.027$	independent and constrained
$wR(F^2) = 0.068$	refinement
S = 1.05	$w = 1/[\sigma^2(F_0^2) + (0.039P)^2]$
3811 reflections	where $P = (F_0^2 + 2F_c^2)/3$
296 parameters	$(\Delta/\sigma)_{\rm max} = 0.001$
	$\Delta \rho_{\rm max} = 0.49 \ {\rm e} \ {\rm \AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.91 \text{ e } \text{\AA}^{-3}$

Table 1 Selected geometric parameters (Å, °).

Cd1 - O2W	2.230 (3)	Cu2-O10	1.934 (2)
Cd1-O6	2.310 (2)	Cu2-Cu1	2.9532 (10)
Cd1 - O1W	2.379 (2)	O10-Cu1	1.932 (2)
Cd1-O5	2.549 (2)	O9-Cu1	1.907 (2)
Cu2-O8	1.884 (2)	O4-Cu1	1.888 (2)
Cu2-O5	1.909 (2)	O1-Cu1	1.899 (2)
Cu2-O9	1.914 (2)		
O2W-Cd1-O6	86.44 (10)	O1W-Cd1-O5	96.10 (7)
O2W - Cd1 - O1W	167.46 (9)	O8-Cu2-O5	93.89 (9)
O6-Cd1-O1W	100.53 (9)	O8-Cu2-O9	94.27 (9)
O2W-Cd1-O5	79.68 (8)	Cu1-O10-Cu2	99.61 (9)
O6-Cd1-O5	53.05 (7)	Cu1-O9-Cu2	101.25 (9)

l able 2			
Hydrogen-bond	geometr	y (Å,	°).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$O1W-H1A\cdots O8^{i}$ $O1W-H1B\cdots O1^{ii}$	0.79 (4) 0.80 (4)	1.93 (2) 2.04 (3)	2.701 (3) 2.748 (3)	164 (5) 149 (5)
$O2W - H2A \cdots O2^{m}$ $O2W - H2B \cdots O7^{iv}$	0.82(4) 0.82(4)	1.92(2) 1.83(2)	2.724 (3) 2.635 (4)	170 (5) 169 (5)
		(-)		

Symmetry codes: (i) -x, -y + 1, -z + 2; (ii) -x, -y, -z + 2; (iii) -x + 1, -y, -z + 2; (iv) -x + 1, -y + 1, -z + 2.

Water H atoms were located in difference syntheses and refined isotropically $[O-H = 0.79 (4)-0.82 (4) \text{ Å and } U_{iso}(H) = 0.063 (16)-$ 0.09 (2) Å²]. The remaining H atoms were positioned geometrically, with C–H = 0.93 Å, and constrained to ride on their parent atoms, with $U_{\rm iso}(\rm H) = 1.2U_{eq}(\rm C)$.

Data collection: *SMART* (Siemens, 1996); cell refinement: *SAINT* (Bruker, 1997); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Bruker, 1997); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

References

- Bruker (1997). SAINT (Version 4.035) and SHELXTL (Version 5.05). Bruker AXS Inc., Madison, Wisconsin, USA.
- Jiang, Y. Q., Zhou, Z. H. & Wei, Z. B. (2005). Chin. J. Struct. Chem. 24, 457–461.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Siemens (1996). SMART (Versions 4.0). Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Tao, J., Zhang, Y., Tong, M. L., Chen, X. M., Yuen, T., Lin, C. L., Huang, X. Y. & Li, J. (2002). *Chem. Commun.* pp. 1342–1343.